Computing Sharp 2-Factors in Claw-Free Graphs
نویسندگان
چکیده
In a recently submitted paper we obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight. In this paper we extend these results by presenting a polynomial algorithm that constructs a 2-factor of a claw-free graph with minimum degree at least four whose number of components meets this bound. As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists) is polynomially solvable for a subclass of claw-free graphs. As another byproduct we give a short constructive proof for a result of Ryjáček, Saito & Schelp.
منابع مشابه
2-factors in Claw-free Graphs
We consider the question of the range of the number of cycles possible in a 2-factor of a 2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced K1,3.) In particular, we show that for such a graph G of order n ≥ 51 with δ(G) ≥ n−2 3 , G contains a 2-factor with exactly k cycles, for 1 ≤ k ≤ n−24 3 . We also show that this result is shar...
متن کاملRepetition Number of Graphs
Every n-vertex graph has two vertices with the same degree (if n ≥ 2). In general, let rep(G) be the maximum multiplicity of a vertex degree in G. An easy counting argument yields rep(G) ≥ n/(2d − 2s + 1), where d is the average degree and s is the minimum degree of G. Equality can hold when 2d is an integer, and the bound is approximately sharp in general, even when G is restricted to be a tre...
متن کاملMinimal Claw-Free Graphs
A graph G is a minimal claw-free graph (m.c.f. graph) if it contains no K1,3 (claw) as an induced subgraph and if, for each edge e of G, G − e contains an induced claw. We investigate properties of m.c.f. graphs, establish sharp bounds on their orders and the degrees of their vertices, and characterize graphs which have m.c.f. line graphs. MSC 2000: 05C75, 05C07
متن کاملSharp Upper Bounds on the Minimum Number of Components of 2-factors in Claw-free Graphs
Let G be a claw-free graph with order n and minimum degree δ. We improve results of Faudree et al. and Gould & Jacobson, and solve two open problems by proving the following two results. If δ = 4, then G has a 2-factor with at most (5n− 14)/18 components, unless G belongs to a finite class of exceptional graphs. If δ ≥ 5, then G has a 2-factor with at most (n− 3)/(δ − 1) components, unless G is...
متن کاملApproximating independence polynomials of claw-free graphs
Matchings in graphs correspond to independent sets in the corresponding line graphs. Line graphs are an important subclass of claw-free graphs. Hence studying independence polynomials of claw-free graphs is a natural extension of studying matching polynomials of graphs. We extend a result of Bayati et.al. showing a fully polynomial time approximation scheme (FPTAS) for computing the independenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Discrete Algorithms
دوره 8 شماره
صفحات -
تاریخ انتشار 2008